Influence of substrate on electricity generation of Shewanella loihica PV-4 in microbial fuel cells
نویسندگان
چکیده
BACKGROUND The substrate, serving as carbon and energy source, is one of the major factors affecting the performance of microbial fuel cells (MFCs). We utilized BIOLOG system to rapidly screen substrates for electricigens, and further evaluated influence of these substrates on electricity generation of Shewanella loihica PV-4 in MFCs. RESULTS Three of most favorable substrates (lactate acid, formic acid and cyclodextrin) with OD590/750 of 0.952, 0.880 and 0.849 as well as three of most unfavorable substrates (galactose, arabinose and glucose) with OD590/750 of 0.248, 0.137 and 0.119 were selected by BIOLOG system under aerobic conditions. The chronoamperometry results showed that MFCs fed with these substrates exhibited different current behaviors. Cyclic voltammograms results showed that arabinose, galactose and glucose promoted electron transfer from outer membrane c-Cyts of cells to the electrode surface. Lactic acid, formic acid and cyclodextrin produced lower quantity of electric charge of 10.13 C, 9.83 C and 10.10 C, the corresponding OD600 value was 0.180, 0.286 and 0.152 in BES; while galactose, arabinose and glucose generated higher quantity of electric charge of 12.34 C, 13.42 C and 17.45 C, and increased OD600 values were 0.338, 0.558 and 0.409 in BES. SEMs results showed that plenty of plump and stretched cells as well as appendages were observed when lactic acid, formic acid, and cyclodextrin were utilized as substrates, while sparse cells in short shape were obtained when galactose, arabinose and glucose were used as substrates. CONCLUSIONS These results suggest that substrate not only has important role in electrochemical performances of MFCs but also in biological properties of electricigens. Lactic acid, formic acid, and cyclodextrin beneficial for cell growth under aerobic conditions are unfavourable for planktonic cell growth and current generation under anaerobic conditions, while consumptions of galactose, arabinose and glucose adverse to cell growth under aerobic conditions are favourable for planktonic cell growth and current generation under anaerobic conditions due to the increase of cell numbers with more outer membrane c-Cyts transferring electrons between the electrode surface and cells.
منابع مشابه
Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.
Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency...
متن کاملShewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean.
A novel marine bacterial strain, PV-4(T), isolated from a microbial mat located at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has been characterized. This micro-organism is orangey in colour, Gram-negative, polarly flagellated, facultatively anaerobic and psychrotolerant (temperature range, 0-42 degrees C). No growth was observed with nitrate, nitrite, DMSO or thiosulfate as th...
متن کاملDifferential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses.
UNLABELLED Determining the function and regulation of paralogues is important in understanding microbial functional genomics and environmental adaptation. Heme homeostasis is crucial for the survival of environmental microorganisms. Most Shewanella species encode two paralogues of ferrochelatase, the terminal enzyme in the heme biosynthesis pathway. The function and transcriptional regulation o...
متن کاملExtracellular Electron Transfer Mechanism in Shewanella loihica PV- 4 Biofilms Formed at Indium Tin Oxide and Graphite Electrodes
Extracellular electron transfer mechanism in Shewanella loihica PV4 biofilms formed at indium tin oxide and graphite electrodes. Journal Article How to cite: Jain, Anand; O Connolly, Jack; Woolley, Richard; Krishnamurthy, Satheesh and Marsili, Enrico (2013). Extracellular electron transfer mechanism in Shewanella loihica PV4 biofilms formed at indium tin oxide and graphite electrodes. Internati...
متن کاملEquivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis
The effect of the thickness of ceramic membrane on the productivity of microbial fuel cells (MFCs) was investigated with respect to the electricity generation and domestic wastewater treatment efficiencies. The thickest ceramic membrane (9 mm) gained the highest coulombic efficiency (27.58±4.2 %), voltage (681.15±33.1 mV), and current and power densities (447.11±21.37 mA/m2, 63.82±10.42 mW/m2) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014